THE CLOSED LEAF INDEX OF FOLIATED MANIFOLDS

BY

LAWRENCE CONLON AND SUE GOODMAN

ABSTRACT. For M a closed, connected, oriented 3-manifold, a topological invariant is computed from the cohomology ring $H^*(M; \mathbb{Z})$ that provides an upper bound to the number of topologically distinct types of closed leaves any smooth transversely oriented foliation of M can contain. In general, this upper bound is best possible.

Introduction. Let M be a closed, connected, oriented n-manifold, F a smooth transversely oriented foliation of codimension one on M. Throughout this paper, the term "foliated n-manifold" will mean such a pair (M, F).

DEFINITION. The closed leaf index of F is the number $\gamma(F)$ of distinct topological types of closed leaves in F.

It is easy to see that $\gamma(F)$ is finite. By a theorem of S. P. Novikov [3], all foliations of S^3 have $\gamma(F) = 1$, and those of $S^1 \times S^2$ have $\gamma(F) > 1$. It is also known [2] that foliations of T^3 satisfy $0 < \gamma(F) < 2$ and that those of $S^1 \times S^2$ satisfy $1 < \gamma(F) < 2$, each of these possibilities being realized by a suitable foliation. By [1], the greatest lower bound of $\gamma(F)$ on any closed 3-manifold M is always 0 or 1. It is a result of P. Schweitzer [5] that, for n > 5, every n-manifold that can be foliated admits a C^0 foliation F (with C^{∞} leaves) having $\gamma(F) = 0$. In this paper we will produce a fairly severe upper bound to the closed leaf index of foliated 3-manifolds. Analogous but weaker results will be obtained in higher dimensions.

DEFINITION. The symbol $\alpha(M)$ denotes the largest integer such that some basis x_1, \ldots, x_r of $H^1(M; \mathbb{Z}) = \mathbb{Z}^r$ satisfies $x_i \cup x_j = 0, 1 \le i, j \le \alpha(M)$.

For instance, $\alpha(S^3) = 0$, $\alpha(S^1 \times S^2) = 1$, and $\alpha(T^3) = 1$. Indeed, we will compute α for all oriented S^1 -bundles over closed oriented surfaces (§3).

It is convenient to define a strictly increasing function $\varphi: \mathbb{Z}^+ \to \mathbb{Z}^+$ by

$$\varphi(k) = \begin{cases} k+1, & k=0, 1, \\ 3k-2, & k \ge 2. \end{cases}$$

THEOREM A. If (M, F) is a foliated 3-manifold, then $\gamma(F) \leq \varphi(\alpha(M))$.

THEOREM B. For each integer k > 0, there is a foliated 3-manifold (M_k, F_k) such that $\alpha(M_k) = k$ and $\gamma(F_k) = \varphi(k)$.

Received by the editors May 14, 1975 and, in revised form, March 29, 1976. AMS (MOS) subject classifications (1970). Primary 57D30; Secondary 57D95.

We do not know, however, whether Theorem A gives the best possible upper bound for $\gamma(F)$ on every 3-manifold. We conjecture that this fails, in fact, for the "least twisted" nontrivial oriented S^1 -bundle over a closed, oriented surface of genus g > 0.

In higher dimensions it is not reasonable to expect such sharp information on $\gamma(F)$, but the following invariants are manageable.

DEFINITION. The homology index of F is the number h(F) of classes in $H_{n-1}(M^n; \mathbb{Z})$, distinct modulo sign, that can be represented by closed leaves of F. The mod 2 homology index $h_2(F)$ is the number of distinct classes in $H_{n-1}(M^n; \mathbb{Z}_2)$ so represented.

DEFINITION. The *Euler index* of F is the number e(F) of distinct integers $|\chi(L)|$ for closed leaves L of F.

On even dimensional manifolds, the Euler index is always 0 or 1; hence this invariant is of real significance only on odd dimensional manifolds. For foliated 3-manifolds, the equality $\gamma(F) = e(F)$ is immediate from the classification of closed surfaces and the Reeb stability theorem, so Theorem A and Theorem B are specializations respectively of Theorem A' and Theorem B' below.

THEOREM A'. If (M, F) is a foliated n-manifold, then $e(F) \le h(F) = h_2(F) \le \varphi(\alpha(M))$.

THEOREM B'. For each pair of integers $(n, k) \neq (4, 0)$ with $n \geq 3$ and $k \geq 0$, there is a foliated n-manifold (M_k^n, F_k) with $\alpha(M_k^n) = k$ and $h(F_k) = \varphi(k)$. If n is odd, then also $\gamma(F_k) \geq e(F_k) = \varphi(k)$.

The nonexistence of (M_0^4, F_0) is seen by noting that $H^1(M_0^4) = 0$. By Poincaré duality the relation $\chi(M_0^4) > 2$ must hold and, consequently, there can be no foliation of M_0^4 of codimension one.

Theorem A' involves a series of topological and combinatorial considerations. Theorem B' is a consequence of recent deep results of W. Thurston [6]. The authors are grateful to Thurston for preprints of his work.

1. Submanifold systems of codimension one. Let M be a closed, connected, oriented n-manifold. A set $\mathcal{L} = \{L_1, \ldots, L_r\}$ of disjoint, imbedded, closed, connected, oriented submanifolds of M of codimension one will be called a submanifold system. In this section we assemble a number of facts about such systems, applications being made later to foliations.

We denote by $[L_i]$ the element of $H_{n-1}(M)$ represented by the fundamental cycle of L_i , and by $[\mathcal{L}]$ the set $\{[L_1], \ldots, [L_r]\}$. Here and elsewhere, unless otherwise specified, all homology and cohomology will have integral coefficients. Note that $H_{n-1}(M) \cong H^1(M)$ and that this group is free abelian by the universal coefficient theorem.

For the usual reasons, any two maximal linearly independent subsets of $[\mathcal{L}]$ have the same cardinality, namely the rank of $\operatorname{span}_{\mathbf{Z}}[\mathcal{L}]$. The geometric interpretation of this fact is that any two subsets of \mathcal{L} , maximal with respect to the property of not disconnecting M, have the same cardinality. We suppose that $\{[L_1], \ldots, [L_k]\}$ is a maximal linearly independent subset and define $\operatorname{rank}(\mathcal{L}) = k$.

LEMMA 1.1. The set $\{[L_1], \ldots, [L_k]\}$ spans a direct summand of $H_{n-1}(M)$. An element $x \in H_{n-1}(M)$ which is linearly dependent on $\{[L_1], \ldots, [L_k]\}$ can be represented by a closed, connected, oriented submanifold $L \subset M$ disjoint from L_i , $1 \le i \le k$, if and only if $x = \varepsilon_1[L_1] + \cdots + \varepsilon_k[L_k]$ where each $\varepsilon_i \in \{0, 1, -1\}$.

PROOF. Since $W = M - \bigcup_{i=1}^k L_i$ is an open connected subspace of M, we can let $\sigma_1, \ldots, \sigma_k$ be disjoint smoothly imbedded circles in M transverse to $\bigcup_{i=1}^k L_i$ with $\sigma_i \cap L_j$ a set of δ_{ij} points, $1 \le i, j \le k$. By suitably orienting these circles we obtain the homology intersection products $[\sigma_i] * [L_j] = \delta_{ij}$. In particular, $\{[L_1], \ldots, [L_k]\}$ spans a direct summand of $H_{n-1}(M)$.

If $L \subset W$ is a closed, connected, oriented submanifold of M which does not disconnect W, then the above argument shows that [L] is linearly independent of $\{[L_1], \ldots, [L_k]\}$. But if L does disconnect W, then it is clear that $[L] = \sum_{i=1}^k \epsilon_i[L_i]$, where each $\epsilon_i \in \{0, 1, -1\}$.

If $x = \varepsilon_1[L_1] + \cdots + \varepsilon_k[L_k]$ and each $\varepsilon_i \in \{0, 1, -1\}$, we can suppose

$$x = [L_1] + \cdots + [L_h] - [L_{h+1}] - \cdots - [L_{h+q}]$$

(where either h or q may be 0). Let L'_i be obtained by displacing L_i a distance $\varepsilon > 0$ along the positive normal trajectories to L_i , $1 \le i \le h$, and along the negative normal trajectories if $h+1 \le i \le h+q$. Using the fact that W is connected, we construct simple arcs τ_i : $[0, 1] \to M$ meeting the following specifications. No τ_i meets an L_j , $1 \le j \le k$, and the interior of no τ_i meets an L'_j , $1 \le j \le h+q$. For $1 \le i \le h-1$, the arc τ_i joins the positive side of L'_i to the positive side of L'_{i+1} . The arc τ_h joins the positive side of L'_h to the negative side of L'_{i+1} . For $h+1 \le i \le h+q-1$, the arc τ_i joins the negative side of L'_i to the negative side of L'_{i+1} . The connected sum of the manifolds L'_i via small tubes along these arcs is a closed, connected, oriented manifold L meeting no L_i , $1 \le j \le k$, such that x = [L]. \square

In particular, we can now write $[L_j] = \sum_{i=1}^k \varepsilon_j^i [L_i]$, $1 \le j \le r$, where each $\varepsilon_i^i \in \{0, 1, -1\}$. Let E_i denote the coefficient k-tuple $(\varepsilon_i^1, \varepsilon_i^2, \ldots, \varepsilon_i^k)$ of $[L_i]$.

LEMMA 1.2. If $\{[L_p], [L_q]\}$ is linearly independent, then E_p and E_q do not have exactly the same zero entries.

PROOF. We can assume p, q > k. The set consisting of L_p together with those L_i for which $\varepsilon_p^i \neq 0$ (say $1 \leq i \leq h \leq k$ after suitable renumbering)

disconnects the manifold into two components, W_1 and W_2 , with common boundary $L_p \cup L_1 \cup \cdots \cup L_h$. The manifold L_q lies in one of these components, say W_1 , and if E_q has exactly the same zero entries as E_p , then L_q separates W_1 into two components, one of which has boundary $L_q \cup L_1 \cup \cdots \cup L_h$. It follows that the other component has boundary $L_p \cup L_q$, contradicting the linear independence of $\{[L_p], [L_q]\}$. \square

DEFINITION. \mathcal{L} is an admissible system if $[\mathcal{L}]$ is pairwise linearly independent (or, equivalently, if $M - (L_i \cup L_j)$ is connected, $1 \le i, j \le r$).

REMARK. Denote by $[L_i]_2$ the element of $H_{n-1}(M; \mathbb{Z}_2)$ carried by L_i and by $[\mathcal{L}]_2$ the set of these classes. The force of (1.2) is that, for \mathcal{L} admissible, $[\mathcal{L}]$ and $[\mathcal{L}]_2$ have the same cardinality.

Let \mathcal{L} be an admissible system. We can modify each L_i by attaching small handles $S^{n-2} \times I$ to L_i within Euclidean neighborhoods of M. If L_i' denotes the resulting submanifold, then $[L_i'] = [L_i]$ and the resulting admissible system \mathcal{L}' has exactly the same separation relations in M as did \mathcal{L} . Furthermore, if U_1, \ldots, U_q are the components of $M - \bigcup L_i$ and U_1', \ldots, U_q' the corresponding components of $M - \bigcup L_i'$, then each U_j' is obtained from U_j by adjoining and/or cutting out solid handles. If a solid handle was adjoined, then $\chi(\overline{U_j'}) = \chi(\overline{U_j}) - 1$. If n is even and a solid handle was cut out, then $\chi(\overline{U_j'}) = \chi(\overline{U_j}) + 1$.

DEFINITION. L' as above is said to be a surgical modification of L.

The principal results of this section will be the following propositions.

PROPOSITION 1.3. If $\chi(M) = 0$ and $\mathcal{L} = \{L_1, \ldots, L_r\}$ is an admissible system, then suitable surgical modifications on \mathcal{L} produce an admissible system $\mathcal{L}' = \{L'_1, \ldots, L'_r\}$ with the following properties:

- (1) The tangent bundle to $\bigcup_{i=1}^{r} L_{i}'$ extends to an (n-1)-plane field on M,
- (2) $H^1(L_i; \mathbf{R}) \neq 0, 1 \leq i \leq r$,
- (3) if n is odd, $\{\chi(L'_1), \ldots, \chi(L'_r)\}$ is a set of distinct negative integers.

PROPOSITION 1.4. If $\mathcal{L} = \{L_1, \ldots, L_r\}$ is an admissible system, then $r \leq \varphi(\alpha(M)) - 1$.

The second of these propositions is the heart of the proof of Theorem A', while the first, together with Thurston's results [6], makes possible a very straightforward construction of the foliated n-manifolds (M_k^n, F_k) for Theorem B'.

First we will need a technical lemma. The notation $E \cdot N$ in the statement of the lemma denotes the usual dot product of k-tuples.

LEMMA 1.5. Let $\mathcal{E}^k = \{(\varepsilon_1, \ldots, \varepsilon_k) : \varepsilon_i \in \{0, 1, -1\}\}$. Given any R > 0, any integer k > 1, and any $\eta = (\eta_1, \ldots, \eta_k) \in (\mathbb{Z}_2)^k$, there exists $N = (\eta_1, \ldots, \eta_k) \in \mathbb{Z}^k$ with all $\eta_i < 0$ such that, for all $E, E' \in \mathcal{E}^k$,

- (1) $E \cdot N = E' \cdot N$ if and only if E = E',
- (2) $|E \cdot N| > R$ if $E \neq (0, \ldots, 0)$,
- (3) $N \equiv \eta \mod 2$.

PROOF. This is trivial for k=1, so we argue by induction on k. Suppose $N=(n_1,\ldots,n_k)$ satisfies the conditions. Choose $E^*\in \mathcal{E}^k$ such that $|E^*\cdot N|$ is maximal. Choose $n_{k+1}<0$ with the desired parity and such that $|n_{k+1}|>2|E^*\cdot N|$. Let $N'=(n_1,\ldots,n_{k+1})\in \mathbb{Z}^{k+1}$. If $\sum_{i=1}^{k+1}\varepsilon_i n_i=\sum_{i=1}^{k+1}\varepsilon_i' n_i$, ε_i , $\varepsilon_i'\in\{0,1,-1\}$, then

$$(\varepsilon_{k+1}'-\varepsilon_{k+1})n_{k+1}=\sum_{i=1}^k\varepsilon_in_i-\sum_{i=1}^k\varepsilon_i'n_i=E\cdot N-E'\cdot N.$$

We consider the only possible cases:

- $(1)\left|\varepsilon_{k+1}'-\varepsilon_{k+1}\right|=1,$
- $(2) \left| \varepsilon_{k+1}' \varepsilon_{k+1} \right| = 2,$
- (3) $\varepsilon'_{k+1} = \varepsilon_{k+1}$ and $E \cdot N = E' \cdot N$.

In case (1), $|n_{k+1}| = |E \cdot N - E' \cdot N| < 2|E^* \cdot N|$ and this contradicts the assumption that $|n_{k+1}| > 2|E^* \cdot N|$. In case (2), $|n_{k+1}| < |E^* \cdot N|$, again a contradiction. Thus case (3) alone is possible. By the inductive hypothesis, E = E' and so $\varepsilon_i = \varepsilon_i'$, 1 < i < k+1. Furthermore, if $E'' = (\varepsilon_1'', \ldots, \varepsilon_{k+1}'') \in \mathcal{E}^{k+1}$, we claim $|E'' \cdot N'| > R$. Indeed, if $\varepsilon_{k+1}'' = 0$, this comes from the inductive hypothesis and, if $\varepsilon_{k+1}'' \neq 0$, then

$$\begin{aligned} |E'' \cdot N'| &= \left| \sum_{i=1}^{k} \varepsilon_i'' n_i \pm n_{k+1} \right| > |n_{k+1}| - \left| \sum_{i=1}^{k} \varepsilon_i'' n_i \right| \\ &> 2|E^* \cdot N| - |E^* \cdot N| = |E^* \cdot N| > R. \quad \Box \end{aligned}$$

We also need the following fairly well-known fact.

LEMMA 1.6. If W is a compact connected n-manifold, v a vector field defined along ∂W and transverse to ∂W , ∂W_+ the part of ∂W along which v points out of W, ∂W_- the part along which v points inward, then v extends to a nowhere zero vector field on W if and only if $\chi(W) = \chi(\partial W_+) = \chi(\partial W_-)$. Equivalently, for n even, this holds precisely when $\chi(W) = 0$, and for n odd, it holds precisely when $\chi(\partial W_+) = \chi(\partial W_-)$.

Indeed, v always extends to \tilde{v} with only isolated nondegenerate singularities in int(W) and, W being connected, the singularities can be eliminated if the sum of their indices $\iota(\tilde{v}) = 0$. The condition that $\iota(\tilde{v}) = 0$ is exactly the condition in (1.6), as is seen by standard relative Hopf index formulas (a very general formula is given by C. Pugh [4]).

PROOF OF (1.3). To begin with, note that adding a single handle to L_i produces L'_i with $H^1(L'_1; \mathbb{R}) \neq 0$ and this property is never lost by adding

more handles. This is easily established via the Mayer-Vietoris sequence. Thus, without loss of generality, we can suppose that $H^1(L_i; \mathbf{R}) \neq 0$, $1 \leq i \leq r$, and this property is never lost during the surgical modification, so property (2) is assured.

For the rest of the argument we must distinguish the cases in which n is odd or even. First suppose that n is even. Let U_1, \ldots, U_q be the components of $M - \bigcup_{i=1}^r L_i$. Each $\overline{U_j}$ is a manifold with boundary $\partial \overline{U_j}$ equal to the union of some of the manifolds L_i . If L_{i_1}, \ldots, L_{i_p} are in $\operatorname{int}(\overline{U_j})$, then $\overline{U_j} - \bigcup_{m=1}^p L_{i_m}$ is connected and we produce a compact connected manifold W_j by cutting $\overline{U_j}$ open along each L_{i_m} . Note that $\chi(W_j) = \underline{\chi}(\overline{U_j})$. Also $0 = \chi(M) = \sum_{j=1}^q \chi(\overline{U_j})$ since the boundary components of every $\overline{U_j}$ are odd dimensional, hence have vanishing Euler characteristic.

Find a sequence U_{n_1}, \ldots, U_{n_p} such that each U_i appears at least once in the sequence and such that $\partial \overline{U}_{n_p}$ and $\partial \overline{U}_{n_{p+1}}$ have a common component L_{n_p} , 1 < j < p-1. (Repetitions have to be allowed. For instance, $\partial \overline{U}_1$ might contain every L_i , which would force such a sequence as $U_1, U_2, U_1, U_3, U_1, \ldots$.) If $\chi(\overline{U}_{n_1}) \neq 0$, add a suitable number of handles to L_{n_1} (into \overline{U}_{n_1} if $\chi(\overline{U}_{n_1}) > 0$, into \overline{U}_{n_2} if $\chi(\overline{U}_{n_1}) < 0$) so that the new $\chi(\overline{U}_{n_1}) = 0$. Proceed in this way through the sequence. Since some U_{n_p} may equal some $U_{n_{p-1}}$, the good work already done on $U_{n_{p-1}}$ may be undone in passing from $U_{n_{p-1}}$ to U_{n_p} , but if j < p, this will be remedied in passing from U_{n_p} to $U_{n_{p+1}}$. When one finally arrives at U_{n_p} , every $U_{n_p} \neq U_{n_p}$ satisfies $\chi(\overline{U}_{n_p}) = 0$. Assume $U_{n_p} = U_q$ and observe that

$$0 = \chi(M) = \sum_{j=1}^{q} \chi(\overline{U}_j) = \chi(\overline{U}_q).$$

Thus, without loss of generality, we suppose \mathcal{L} is such that each $\chi(W_j) = 0$. Let v be the unit normal field along $\bigcup_{i=1}^r L_i$. This defines a field v_j along ∂W_j ; hence (1.6) implies that v extends to a nonsingular field on all of M. Property (1) follows and, since n is even, property (3) is irrelevant.

Next suppose that n is odd. Surgical modification reduces the Euler characteristic of L_i by 2 for each handle added to L_i . In particular, this allows us to assume that $\chi(L_i) < 0$, $1 \le i \le r$. Remark also that for any compact odd-dimensional manifold W, $\chi(\partial W)$ is an even number since ∂W is cobordant to zero. Let $\{[L_1], \ldots, [L_k]\}$ be a maximal linearly independent subset of $[\mathcal{L}]$. If $[L_i] = \sum_{j=1}^k \epsilon_i^j [L_j]$ then L_i , together with those L_j for which $\epsilon_i^j \ne 0$, cobound in M, so

$$\chi(L_i) \equiv \sum_{j=1}^k \varepsilon_i^j \chi(L_j) \mod 2.$$

Let $R > |\chi(L_i)|$, $1 \le i \le r$, and let $N = (n_1, \ldots, n_k)$ satisfy (1.5) with $n_j \equiv \chi(L_j) \mod 2$, $1 \le j \le k$. Let $\sigma_1, \ldots, \sigma_k$ be circles in M such that $[\sigma_i] * [L_j] = \delta_{ij}$, $1 \le i$, $j \le k$. Let $\gamma = \sum_{j=1}^k n_j [\sigma_j]$. Then, if $E_i = (\varepsilon_i^1, \ldots, \varepsilon_i^k)$ denotes the coefficient k-tuple of $[L_i]$, we see that $\gamma * [L_i] = E_i \cdot N$. Since $E_i \ne \pm E_j$ for $i \ne j$, (1.5) implies that $|\gamma * [L_i]|$, $1 \le i \le k$, are distinct nonzero integers. Changing the orientation of L_i , if necessary, we can assume all $\gamma * [L_i]$ are negative. By the above,

$$|\gamma * [L_i]| > |\chi(L_i)|, \quad \gamma * [L_i] \equiv \chi(L_i) \mod 2, \quad 1 \le i \le r.$$

Thus, by surgical modification, we can produce \mathcal{L}' such that $\gamma * [L_i] = \gamma * [L_i'] = \chi(L_i') < 0, 1 \le i \le r$, and these integers are distinct.

Let $\xi \in H^{n-1}(M)$ be the Poincaré dual of γ . Then, $\xi([L_i]) = \int_{L_i} \xi = \chi(L_i')$. Let v be the unit normal field along $\bigcup_{i=1}^r L_i'$ directed in the positive sense (relative to the orientation of L_i'). Let U_1, \ldots, U_q be the components of $M - \bigcup_{i=1}^r L_i'$ and let ξ_i be the restriction of ξ to $\overline{U_i}$. On $\partial \overline{U_i}$, understood as oriented inward, ξ_i integrates to 0; hence on $\partial \overline{U_{i+1}}$, oriented outward, ξ_i integrates to the same value as on $\partial \overline{U_{i+1}}$, oriented inward. That is,

$$\chi(\partial U_{i+}) = \chi(\partial U_{i-}), \quad 1 \le i \le q.$$

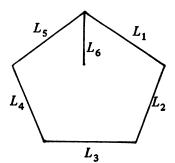
Let W_i be the compact connected manifold obtained by cutting $\overline{U_i}$ open along each $L'_j \subset \operatorname{int}(\overline{U_i})$. Then v defines v_i along ∂W_i and transverse to ∂W_i . Each $L'_j \subset \operatorname{int}(\overline{U_i})$ determines two diffeomorphic boundary components of W_i , one in ∂W_{i+} and one in ∂W_{i-} . Thus $\chi(\partial W_{i+}) = \chi(\partial W_{i-})$, $1 \le i \le q$, so v_i extends to a nonsingular vector field over W_i (by (1.6)); hence v extends to a nonsingular vector field over M. This defines the desired extension of the tangent bundle of $\bigcup_{i=1}^r L'_i$, hence establishes property (1). Properties (2) and (3) have already been assured, so the proof of (1.3) is complete. \square

The proof of (1.4) will proceed by a sequence of lemmas. We will be interested only in the separation properties of \mathcal{L} in M, so all homological arguments will be carried out with \mathbb{Z}_2 -coefficients. This is legitimate by reason of (1.2) and the remark following that lemma. Thus, rank(\mathcal{L}) is dim(span[\mathcal{L}]₂) and the coefficient k-tuple E_i for $[L_i]_2$ will be an element of $(\mathbb{Z}_2)^k$.

DEFINITION. If \mathcal{L} and \mathcal{L}' are admissible systems, then $\mathcal{L} \leq \mathcal{L}'$ means $\mathcal{L} \subset \mathcal{L}'$ and rank(\mathcal{L}) = rank(\mathcal{L}').

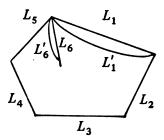
DEFINITION. An admissible system $\mathcal{C} = \{L_1, \ldots, L_r\}$ is polygonal if each L_i occurs as a boundary component of some U_j (hence of exactly two) where U_1, \ldots, U_q is the set of components of $M - \bigcup_{i=1}^r L_i$.

The term "polygonal" is due to a heuristic procedure by which each \overline{U}_j is represented by a diagram such as

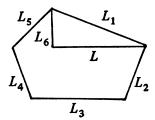


where $\partial \overline{U_j} = L_1 \cup L_2 \cup L_3 \cup L_4 \cup L_5$ and $L_6 \subset \operatorname{int}(\overline{U_j})$. The word "polygonal" indicates that each $\overline{U_j}$ is represented by a simple closed polygon, hence has no L_i in the interior.

In the above example, produce L_1' and $L_6' \subset \operatorname{int}(U_j')$ by displacing L_1 and L_6 a small distance $\varepsilon > 0$ along normal trajectories. A schematic representation of this situation would be



since L_i and L_i' cobound for i=1, 6. A connected sum of L_1' and L_6' along a small tube lying entirely in $\operatorname{int}(\overline{U_j})$ and missing L_6 produces $L \subset \operatorname{int}(\overline{U_j})$ such that $L \cap L_6 = \emptyset$ and $L \cup L_6$ disconnects $\overline{U_j}$. The schematic representation of the final state of affairs would be



Finally, if $[L]_2 \neq [L_i]_2$ for every $L_i \in \mathcal{L}$, this construction produces $\mathcal{L}' = \{L_1, \ldots, L_r, L\}$ with $\mathcal{L} \leq \mathcal{L}'$. This idea is exploited in the following lemma.

LEMMA 1.7. If \mathcal{L} is an admissible system of rank at least 2, then $\mathcal{L} < \mathcal{L}'$ for some admissible polygonal system \mathcal{L}' .

PROOF. As usual, arrange that $\{[L_1]_2, \ldots, [L_k]_2\}$ is a maximal linearly independent subset of $[\mathcal{L}]_2$. If $L_i \subset \operatorname{int}(U_i)$, then $L_1 \cup \cdots \cup L_k \cup L_i$ cannot

separate M, hence $i \le k$. Arrange that $\{L_1, \ldots, L_p\}$, $p \le k$, is the subset of those L_i each of which is contained in the interior of some $\overline{U_j}$. Thus every $E_j = (\varepsilon_j^1, \ldots, \varepsilon_j^k)$ has $\varepsilon_j^i = 0$ for $1 \le i \le p$. The system \mathcal{L} is polygonal if and only if p = 0.

If p = k, then k = r > 2 and by (1.1) the class $x = [L_1]_2 + \cdots + [L_r]_2$ can be represented by connected orientable $L_{r+1} \subset M$ disjoint from every L_i , $1 \le i \le r$, $[L_{r+1}]_2$ being linearly independent of $[L_i]_2$, $1 \le i \le r$. $\mathcal{L}' = \{L_1, \ldots, L_r, L_{r+1}\}$ is admissible of rank k = r and is also polygonal.

If $0 , let <math>U_i$ be the component such that $L_p \subset \operatorname{int}(\overline{U_i})$. Let $L_s \subset \partial \overline{U_i}$. As in the remarks preceding the lemma, displace both L_s and L_p slightly and form a connected sum so as to produce $L_{r+1} \subset \operatorname{int}(\overline{U_i})$ with

$$L_{r+1} \cap L_j = \emptyset, \qquad 1 \le j \le r,$$
$$[L_{r+1}]_2 = [L_p]_2 + [L_s]_2.$$

This gives an admissible system $\{L_1, \ldots, L_{r+1}\}$ of rank k in which $\{L_1, \ldots, L_{p-1}\}$ is the subset of those L_i contained in some $\operatorname{int}(\overline{U_i})$. This process, repeated finitely often, produces the desired polygonal system \mathcal{L}' .

Remark that polygonal systems must have rank at least 2, hence the necessity of the restriction on rank(\mathcal{C}) in (1.7). This in turn is the reason why $\varphi(k)$ must be defined by a different formula when k = 0, 1.

DEFINITION. An admissible system is *triangular* if it is polygonal and if each $\partial \overline{U}_i$ has exactly three components.

Lemma 1.8. Let \mathcal{L} be an admissible polygonal system. Then $\mathcal{L} \leq \mathcal{L}'$ for some admissible triangular system.

PROOF. If some ∂ ($\overline{U_j}$) has more than three components (fewer are impossible by the definition of an admissible system), let L_1 , L_2 , L_3 , L_4 be distinct components of $\partial \overline{U_j}$. If both $\{[L_1]_2, [L_2]_2, [L_3]_2\}$ and $\{[L_2]_2, [L_3]_2, [L_4]_2\}$ are linearly dependent sets, then $[L_1]_2 = [L_2]_2 + [L_3]_2$ and $[L_4]_2 = [L_2]_2 + [L_3]_2$, and this would contradict $[L_1]_2 \neq [L_4]_2$. Thus we can assume that $\{[L_1]_2, [L_2]_2, [L_3]_2\}$ is a linearly independent set. We claim that either $[L_1]_2 + [L_2]_2$ or $[L_1]_2 + [L_3]_2$ is not in $[\mathcal{L}]_2$. Indeed, if one can find L_p , $L_q \in \mathcal{L}$ such that $[L_p]_2 = [L_1]_2 + [L_2]_2$, $[L_q]_2 = [L_1]_2 + [L_3]_2$, then p, $q \neq 1$, 2, 3 and $p \neq q$. Thus $\{L_1, L_2, L_3, L_p, L_q\}$ is an admissible system of rank 3. The complement in M of $L_1 \cup L_2 \cup L_p$ has two components. Neither L_3 nor L_q individually disconnects the component in which it lies, but $L_1 \cup L_3 \cup L_q$ disconnects M, so L_3 and L_q must lie in the same component of $M - L_1 - L_2 - L_p$ and together disconnect it into two components, one of which must have boundary $L_1 \cup L_3 \cup L_q$ (because all other possibilities lead to a linear dependence between $[L_1]_2$ and $[L_2]_2$). Thus $M - (L_1 \cup L_2 \cup L_3 \cup L_p \cup L_q)$

has components W_1 , W_2 , W_3 with

$$\begin{split} \partial \overline{W}_1 &= L_1 \cup L_3 \cup L_q, \\ \partial \overline{W}_2 &= L_3 \cup L_q \cup L_2 \cup L_p, \\ \partial \overline{W}_3 &= L_1 \cup L_2 \cup L_p. \end{split}$$

Since \mathcal{C} contains this admissible system, U_j must be contained in one of W_1 , W_2 , W_3 . But $\overline{U_j} \subset \overline{W_1}$ contradicts $L_2 \not\subset \overline{W_1}$, $\overline{U_j} \subset \overline{W_2}$ contradicts $L_1 \not\subset \overline{W_2}$, and $\overline{U_j} \subset \overline{W_3}$ contradicts $L_3 \not\subset \overline{W_3}$. Thus we can assume that no $L_p \in \mathcal{C}$ has $[L_p]_2 = [L_1]_2 + [L_2]_2$. Thus, displace both L_1 and L_2 to the interior of U_j and form their connected sum, producing $L_{r+1} \subset U_j$ which separates $\overline{U_j}$ into two components, one with boundary $L_{r+1} \cup L_1 \cup L_2$, the other with one fewer boundary component than $\overline{U_j}$ had. By the above, $\{L_1, \ldots, L_r, L_{r+1}\}$ is admissible, polygonal, and has the same rank as \mathcal{C} . Finite iteration of this process will finally yield the desired triangular system. \square

Thus every admissible \mathcal{L} can be extended to an admissible triangular system \mathcal{L}' of the same rank. The next project is to produce a formula for the number of elements in \mathcal{L}' in terms of the integer rank(\mathcal{L}').

LEMMA 1.9. Let W be a compact, orientable, connected manifold and suppose that ∂W has h components, $h \ge 3$. Let $L_1, \ldots, L_p \subset \operatorname{int}(W)$ be disjoint, closed, connected, orientable submanifolds of $\operatorname{int}(W)$ of codimension one. Suppose that $\{L_1, \ldots, L_s\}$ is a maximal subset such that $W - \bigcup_{i=1}^s L_i$ is connected. Suppose that, for each component U of $W - \bigcup_{i=1}^p L_i$, the manifold $\partial \overline{U}$ has three components and that every L_i occurs as some boundary component for some U. Then p = h + 3s - 3.

PROOF. We do a double induction on h > 3 and s > 0. If h = 3 and s = 0, we claim that p = 0. Otherwise, L_1 separates W into two components one of which, say W', must be bounded by L_1 and a single component of ∂W . If there is any $L_i \subset W'$, then, since s = 0, we again get a component of $W - (L_1 \cup L_i)$ with two boundary components. Proceeding in this way, we finally see that some component of $W - \bigcup_{i=1}^{p} L_i$ has just two boundary components, contrary to our hypothesis.

Suppose the assertion is true for s=0 and for all h such that $3 \le h \le m$. If ∂W has m components and s=0, then L_1 divides W into two components each of which has at least three boundary components (for the same reason as above). If the number of boundary components in each is h_1 and h_2 respectively, then $3 \le h_i < m$, i=1, 2, and $h_1 + h_2 = m + 2$. But each of L_2, \ldots, L_p belongs to one or another component of $W - L_1$ and these components are divided into triangular components. The inductive hypothesis implies that

$$p-1=h_1-3+h_2-3=h_1+h_2-6=m-4$$

and so p = m - 3 as desired.

Finally, assume the assertion for $0 \le s < n$ and for all h. Suppose $\{L_1, \ldots, L_n\}$ is a maximal subset not separating W. Necessarily n < p since, otherwise, h = 3, p = 0, and so n = 0. Thus, the set $\{L_1, \ldots, L_n, L_{n+1}\}$ separates W into two components W_1 and W_2 . We can suppose that the common boundary is $\partial W_1 \cap \partial W_2 = L_1 \cup \cdots \cup L_q \cup L_{n+1}$ where $0 \le q \le n$. We can even suppose q > 0 since, if this were impossible to arrange, none of L_1, \ldots, L_n could ever occur as a boundary component of any component of $W - \bigcup_{i=1}^p L_i$, contradicting the assumption that n > 0. Suppose that s_1 of $\{L_{q+1}, \ldots, L_n\}$ fall into W_1 and that s_2 of them fall into W_2 . Evidently these s_i manifolds are maximal nonseparating in W_i and $s_i < n$, i = 1, 2. Let h_i be the number of boundary components of W_i and p_i the number of $L_j \subset \text{int}(W_i)$, i = 1, 2. By the inductive hypothesis $p_i = h_i + 3s_i - 3$, i = 1, 2. But $h_1 + h_2 = h + 2q + 2$, $s_1 + s_2 + q = n$, $p_1 + p_2 = p - q - 1$, and so

$$p = p_1 + p_2 + q + 1 = (h_1 + 3s_1 - 3) + (h_2 + 3s_2 - 3) + q + 1$$

= $(h + 2q + 2) + 3s_1 + 3s_2 + q - 5$
= $h + 3(s_1 + s_2 + q) - 3 = h + 3n - 3$. \square

LEMMA 1.10. Let $\mathcal{L} = \{L_1, \ldots, L_r\}$ be an admissible triangular system of rank k. Then r = 3k - 3.

PROOF. Let U be any component of $M-\bigcup_{i=1}^r L_i$ and let $\partial \overline{U}=L_1\cup L_2\cup L_r$. Let $W_1=\overline{U}$ and $W_2=M-U$. These are compact manifolds each with three boundary components. Also, W_2 is connected since $\{[L_1]_2, [L_2]_2, [L_r]_2\}$ is pairwise linearly independent. The set $\{[L_1]_2, [L_2]_2\}$ extends to a maximal independent set $\{[L_1]_2, \ldots, [L_k]_2\}$. If $i\neq 1, 2, r$, then $L_i\subset \operatorname{int}(W_2)$ and $\{L_3, \ldots, L_k\}$ is a maximal nonseparating subset in W_2 . Thus, by (1.9), r-3=3+3(k-2)-3=3k-6 and so r=3k-3. \square

We now prove (1.4). If $\mathcal{L} = \{L_1, \ldots, L_r\}$ is an admissible system of rank k, let $\{[L_1], \ldots, [L_k]\}$ be a maximal independent subset. We emphasize the return to integral homology. By (1.1), this set spans a direct summand of $H_{n-1}(M)$. If x_i denotes the Poincaré dual of $[L_i]$, $1 \le i \le k$, then $\{x_1, \ldots, x_k\}$ extends to a basis of $H^1(M)$. But $x_i \cup x_j$ is the Poincaré dual of $[L_i] * [L_j] = 0$; hence $k \le \alpha(M)$. If k = 0, then r = 0 and there is nothing to prove. If k = 1, then k = 1 and k = 1, then k = 1 and k = 1. If k > 2, then (1.7), (1.8) and (1.10) together imply

$$r \leq 3k - 3 = \varphi(k) - 1 \leq \varphi(\alpha(M)) - 1$$
.

2. Applications to foliated *n*-manifolds. It is easy to prove Theorem A' as a corollary to (1.4). Let (M, F) be a foliated *n*-manifold with h(F) = r. Let

 $\{L_1, \ldots, L_r\}$ be a set of closed leaves of F such that $\{[L_1], \ldots, [L_r]\}$ are distinct modulo sign. If no $[L_i] = 0$, then $\{L_1, \ldots, L_r\}$ is an admissible system. If, say, $[L_r] = 0$, then $\{L_1, \ldots, L_{r-1}\}$ is admissible. In the first case, $r \leq \varphi(\alpha(M)) - 1$, and in the second, $r - 1 \leq \varphi(\alpha(M)) - 1$. In any case, $h(F) \leq \varphi(\alpha(M))$. Also, by (1.2), $h_2(F) = h(F)$.

If L and L' are closed leaves of F with $|\chi(L)| \neq |\chi(L')|$, then $[L] \neq \pm [L']$. Indeed, let $c \in H^{n-1}(M)$ be the Euler class of the tangent bundle to F. Then, if $[L] = \pm [L']$, we would have

$$\pm \chi(L) = c[L] = \pm c[L'] = \pm \chi(L'),$$

a contradiction. It follows that $e(F) \le h(F)$ and the proof of Theorem A' is complete. As remarked in the introduction, Theorem A is a trivial consequence when $\dim(M) = 3$. \square

DEFINITION. An admissible system \mathcal{L} is *integrable* if there is a foliation F of M with each $L_i \in \mathcal{L}$ as a leaf. (Note that the orientation of L_i as a leaf of F may not be the same as that of $L_i \in \mathcal{L}$.)

THEOREM 2.1. If $\chi(M) = 0$ and \mathcal{L} is admissible, then a suitable surgical modification on \mathcal{L} produces an integrable \mathcal{L}' . If, in addition, $\dim(M)$ is odd, it can be arranged that the Euler characteristics of the elements of \mathcal{L}' form a set of distinct negative integers.

PROOF. We allow $\mathcal{L} = \emptyset$, in which case $\operatorname{rank}(\mathcal{L}) = 0$. Produce \mathcal{L}' satisfying (1.3). Then, by Thurston ([6], relative version if $\operatorname{rank}(\mathcal{L}) \neq 0$), there is a foliation of M having each $L'_i \in \mathcal{L}'$ as a leaf. \square

COROLLARY 2.2. If $\chi(M) = 0$ and M supports an admissible system of rank k, then M admits a foliation F with $h(F) > \varphi(k)$. (Here we allow an empty admissible system; hence k = 0). If $\dim(M)$ is odd, such F can also be chosen so that $e(F) > \varphi(k)$.

PROOF. If k > 2, then by (1.7), (1.8), and (1.10) there is an admissible system \mathcal{L} of cardinality 3k - 3. In any case, there is such a system \mathcal{L} of cardinality $\varphi(k) - 1$. By (2.1) we can assume the existence of a foliation F having each $L \in \mathcal{L}$ as a leaf. Also, on odd-dimensional manifolds it can be arranged that the Euler characteristics $\chi(L)$, $L \in \mathcal{L}$, form a set of distinct negative integers. By the Reeb stability theorem we can assume that some leaf is noncompact; hence standard methods show that there is a closed transversal to F missing every leaf $L \in \mathcal{L}$. Modifying F along this transversal [7] produces a foliation F' in which each element of \mathcal{L} is a leaf, but which also has a homologically trivial closed leaf with Euler characteristic zero. Thus $h(F') > \varphi(k)$, and on odd dimensional manifolds M, one also has $e(F') > \varphi(k)$. \square

In order to prove Theorem B', we will now construct a suitable M_k^n and

apply the above corollary together with Theorem A'.

First suppose that n is odd and at least equal to 3. Let $M_0^n = S^n$ and $M_1^n = T^n$. Evidently $\alpha(S^n) = 0$ and $\alpha(T^n) = 1$. For $k \ge 2$, let W_k^n be the complement in D^n of k disjoint open balls with closures in the interior of D^n and let M_k^n be the double of W_k^n . By the above corollary and the obvious fact that M_k^n supports an admissible system $\{L_1, \ldots, L_k\}$ of rank k, we see that M_k^n supports a foliation F_k with $h(F_k) \ge e(F_k) \ge \varphi(k)$.

If *n* is even and at least equal to 4, and if k > 0, set $M_k^n = M_k^{n-1} \times S^1$. If $\{L_1, \ldots, L_k\}$ is an admissible system of rank k on M_k^{n-1} , then the manifolds $L_i' = L_i \times S^1 \subset M_k^n$, $1 \le i \le k$, form an admissible system of rank k. For the case k = 0, set $M_0^6 = S^3 \times S^3$ and $M_0^n = S^3 \times S^3 \times S^{n-6}$, n > 6. In all cases, $\chi(M_k^n) = 0$ and the above corollary guarantees the existence of a foliation F_k with $h(F_k) > \varphi(k)$.

The following lemma together with Theorem A' clearly completes the proof of Theorem B'. As remarked in the introduction, when n = 3 we get Theorem B as a special case.

LEMMA 2.3. $\alpha(M_k^n) = k$ for all n > 3 and all k > 0 (excepting, of course, the nonexistent M_0^4).

PROOF. For k = 0, 1 this is obvious. For n odd and $k \ge 2$, $\pi_i(W_k^n) = 0$, $0 \le i \le n - 2$, so the Hurewicz theorem gives

$$H_{n-1}(W_k^n) = \pi_{n-1}(W_k^n) = \mathbf{Z}^k.$$

There is an exact Mayer-Vietoris sequence

$$H_n(W_k^n) \oplus H_n(W_k^n) \to H_n(M_k^n) \to H_{n-1}(\partial W_k^n) \to H_{n-1}(W_k^n)$$

$$\oplus H_{n-1}(W_k^n) \to H_{n-1}(M_k^n) \to H_{n-2}(\partial W_k^n).$$

But $H_n(W_k^n) = 0$, $H_n(M_k^n) = \mathbb{Z}$, $H_{n-1}(\partial W_k^n) = \mathbb{Z}^{k+1}$, $H_{n-1}(W_k^n) = \mathbb{Z}^k$ and $H_{n-2}(\partial W_k^n) = 0$, so we get

$$0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Z}^{k+1} \rightarrow \mathbb{Z}^{2k} \rightarrow H_{n-1}(M_k^n) \rightarrow 0;$$

hence $0 \to \mathbb{Z}^k \to \mathbb{Z}^{2k} \to H_{n-1}(M_k^n) \to 0$. As earlier remarked, $H_{n-1}(M_k^n)$ is free abelian, so the sequence splits and $\mathbb{Z}^{2k} \cong \mathbb{Z}^k \oplus H_{n-1}(M_k^n)$. Therefore $H_{n-1}(M_k^n) \cong \mathbb{Z}^k$ for n odd. The admissible system $\{L_1, \ldots, L_k\}$ provides a free basis of $H_{n-1}(M_k^n)$ with all intersection products zero. By Poincaré duality, we get a basis x_1, \ldots, x_k of $H^1(M_k^n)$ with all $x_i \cup x_j = 0$, so $\alpha(M_k^n) = k$.

If n is even, then

$$H_{n-1}(M_k^n) \simeq H_{n-1}(M_k^{n-1}) \oplus H_{n-1}(M_k^{n-1}) \simeq \mathbb{Z}^{k+1}.$$

Again we get classes $x_1, \ldots, x_k \in H^1(M_k^n)$ with all $x_i \cup x_j = 0$. These extend to a basis by adjunction of the class x_{k+1} defined by the projection map

of M_k^n onto the factor S^1 , and $x_i \cup x_{k+1} \neq 0$, $1 \leq i \leq k$. It is again clear that $\alpha(M_k^n) = k$. \square

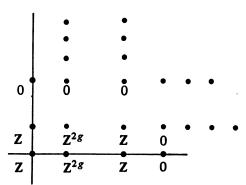
3. A class of examples. Let T_g denote the closed oriented surface of genus g. Let $E_{g,n}$ denote the total space of the oriented S^1 -bundle over T_g having Euler class $n \in H^2(T_g) = \mathbb{Z}$. Since $E_{g,n} \cong E_{g,-n}$, we will always take n > 0. Remark, in particular, that $E_{0,0} = S^1 \times S^2$, $E_{0,1} = S^3$ and $E_{1,0} = T^3$.

We will compute the following.

(3.1)
$$\alpha(E_{g,n}) = \begin{cases} 1, & n = g = 0, \\ 2g, & n = 1, \\ g, & \text{otherwise.} \end{cases}$$

Indeed, $H^{1}(E_{0,0}) = \mathbb{Z}$, so the first equality is immediate.

Since the bundle $S^1 \hookrightarrow E_{g,n} \to_{\pi} T_g$ is orientable, the cohomology spectral sequence has ordinary coefficients. Since $H^1(T_g) = \mathbb{Z}^{2g}$, the E_2 stage takes the following form.



If $1 \in \mathbb{Z} = E_2^{0,1} = H^1(S^1)$ corresponds to the orientation of the fiber, then

$$d_2(1) = n \in \mathbb{Z} = E_2^{2,0} = H^2(T_g)$$

is the Euler class of the bundle. It is also clear that $E_3 = E_{\infty}$.

Lemma 3.2. $H^1(E_{g,1}) = \mathbb{Z}^{2g}$ and the cup products of elements in this group are all zero. Thus $\alpha(E_{g,1}) = 2g$.

PROOF. In the spectral sequence, $d_2(1) = 1$ and so d_2 : $E_2^{0,1} \to E_2^{2,0}$ is an isomorphism. Thus, $E_3^{0,1} = 0$ and $E_3^{1,0} = \mathbb{Z}^{2g}$. Since $E_3 = E_{\infty}$, we have $H^1(E_{g,1}) = \mathbb{Z}^{2g}$. Indeed, by the edge homomorphism, $\pi^* \colon H^1(T_g) \to H^1(E_{g,1})$ is an isomorphism. Since $E_3^{2,0} = 0$, the edge homomorphism also shows that $\pi^* \colon H^2(T_g) \to H^2(E_{g,1})$ is trivial. It follows that all cup products of elements in $H^1(E_{g,1})$ are trivial. \square

LEMMA 3.3. If n > 1, then $H^1(E_{g,n}) = \mathbb{Z}^{2g}$, $H^2(E_{g,n}) = \mathbb{Z}^{2g} \oplus \mathbb{Z}_n$, and there is a basis x_1, \ldots, x_{2g} of $H^1(E_{g,n})$ such that

(1)
$$x_i \cup x_{g+i} = x_j \cup x_{g+j}$$
 is a generator of $\mathbb{Z}_n \subset H^2(E_{g,n})$, $1 < i, j < g$,

$$(2) x_i \cup x_j = 0 \text{ if } |i-j| \neq g.$$

PROOF. In the spectral sequence, $d_2(1) = n$, so $E_3^{0,1} = 0$, $E_3^{2,0} = \mathbb{Z}_n$, $E_3^{1,0} = E_3^{1,1} = \mathbb{Z}^{2g}$. By the edge homomorphism, $\pi^* \colon H^1(T_g) \to H^1(E_{g,n})$ is an isomorphism, the group being \mathbb{Z}^{2g} , and $\pi^* \colon H^2(T_g) \to H^2(E_{g,n})$ has image \mathbb{Z}_n . Also, there is an exact sequence

$$0 \to \mathbb{Z}_n \to H^2(E_{g,n}) \to \mathbb{Z}^{2g} \to 0$$

so $H^2(E_{g,n}) = \mathbb{Z}_n \oplus \mathbb{Z}^{2g}$. Finally, $H^1(T_g)$ has a basis y_1, \ldots, y_{2g} such that, for a generator $z \in H^2(T_g)$,

$$y_i \cup y_{g+i} = z,$$
 $1 \le i \le g$
 $y_i \cup y_i = 0,$ $|i - j| \ne g.$

Setting $x_i = \pi^*(y_i)$ gives the desired basis of $H^1(E_{g,n})$. \square

COROLLARY 3.4. If n > 1, $\alpha(E_{g,n}) = g$.

PROOF. Let p > 1 be a prime which divides n. The bilinear map $\mathbb{Z}^{2g} \times \mathbb{Z}^{2g} \to \mathbb{Z}_n$ given by

$$H^1(E_{g,n}) \times H^1(E_{g,n}) \stackrel{\cup}{\to} \mathbf{Z}_n \subset H^2(E_{g,n}),$$

when tensored with \mathbb{Z}_p , gives a bilinear map $\mathbb{Z}_p^{2g} \times \mathbb{Z}_p^{2g} \to \mathbb{Z}_p$. This is a bilinear form on the \mathbb{Z}_p -vector space \mathbb{Z}_p^{2g} whose matrix, relative to the basis x_1, \ldots, x_{2g} , is

$$J = \begin{bmatrix} 0 & I_{g} \\ -I_{g} & 0 \end{bmatrix}.$$

If z_1, \ldots, z_{2g} is another basis of $H^1(E_{g,n})$ and if $z_i \cup z_j = 0$, $1 \le i$, $j \le g + 1$, then the matrix of the form becomes

$$P^*JP = \begin{bmatrix} 0_{g+1} & * \\ * & * \end{bmatrix}$$

where P is the nonsingular matrix corresponding to the change of basis. But J is nonsingular while the above matrix is clearly singular, so we have reached a contradiction. \square

The manifolds $E_{g,0} = S^1 \times T_g$ must be handled a bit differently. We need the following lemma which is easily checked via the Künneth theorem.

LEMMA 3.5. $H^{1}(E_{g,0}) = \mathbb{Z}^{2g+1} = H^{2}(E_{g,0})$ and there is a basis x_{1}, \ldots, x_{2g}, y of $H^{1}(E_{g,0})$ such that

- $(1) x_i \cup x_{g+i} = x_j \cup x_{g+j} = z, 1 \le i, j \le g,$
- (2) $x_1 \cup y, x_2 \cup y, \ldots, x_{2g} \cup y, z \text{ form a basis of } H^2(E_{g,0}),$
- (3) $x_i \cup x_j = 0, |i j| \neq g$.

In particular, of course, $\alpha(E_{g,0}) > g$. We must prove the reverse inequality for all g > 1.

Let $V \subset H^1(E_{g,0}, \mathbb{Q})$ be the vector subspace spanned by $\{x_1, \ldots, x_{2g}\}$. Define the bilinear form $\varphi: V \times V \to \mathbb{Q}$ by

$$\varphi(v,w)\cdot z=v\cup w.$$

Then, (3.5) implies that the matrix of φ relative to the basis $\{x_1, \ldots, x_{2g}\}$ is

$$\Phi = \begin{bmatrix} 0 & I_g \\ -I_g & 0 \end{bmatrix}.$$

This matrix is nonsingular. As in the proof of (3.4), the following will be enough to prove $\alpha(E_{g,0}) \leq g$.

LEMMA 3.6. If $\alpha(E_{g,0}) > g$, there is a basis $\beta_1, \ldots, \beta_{2g}$ of V such that $\varphi(\beta_i, \beta_i) = 0, 1 \le i, j \le g + 1$.

PROOF. There will be linearly independent elements z_1, \ldots, z_{g+1} of $H^1(E_{g,0}; \mathbb{Q})$ with $z_i \cup z_j = 0$, $1 \le i, j \le g+1$. Express these elements in terms of the basis given in (3.5) as follows:

$$z_i = \sum_{j=1}^{2g} a_j^i x_j + a_{2g+1}^i y.$$

Then

$$0 = z_i \cup z_k = \left(\sum_{i=1}^g a_j^i a_{g+j}^k - a_{g+j}^i a_j^k\right) z + \sum_{i=1}^{2g} \left(a_j^i a_{2g+1}^k - a_j^k a_{2g+1}^i\right) x_j \cup y$$

and from (3.5) we can conclude $0 = \sum_{j=1}^{g} (a_j^i a_{g+j}^k - a_{g+j}^i a_j^k)$ and so, if we set

$$\beta_i = z_i - a_{2g+1}^i y = \sum_{j=1}^{2g} a_j^i x_j, \quad 1 \le i \le g+1,$$

we obtain $\beta_i \cup \beta_k = 0$, $1 \le i,k \le g+1$. In order to show that $\{\beta_1, \ldots, \beta_{g+1}\}$ is linearly independent, it will be enough to show that y is linearly independent of $\{z_1, \ldots, z_{g+1}\}$. This will complete the proof.

Suppose $y = \sum_{i=1}^{g+1} b_i z_i$. Then

$$0 = \left(\sum b_i z_i\right) \cup z_k = y \cup z_k = \sum_{i=1}^{2g} a_i^k y \cup x_j, \qquad 1 < k < g+1.$$

By (3.5) we conclude that all $a_j^k = 0$ for j < 2g, so $z_k = a_{2g+1}^k y$, 1 < k < g + 1. Since we are assuming g > 1, this contradicts the linear independence of $\{z_1, \ldots, z_{g+1}\}$. \square

Formula (3.1) is now completely proven. It is natural to ask whether Theorem A gives the best upper bound for $\gamma(F)$ on $E_{g,n}$. For $n \neq 1$, it is easy to show that this is true.

THEOREM 3.7. If $n \neq 1$ and $(n, g) \neq (0, 0)$, then there is a foliation F of $E_{g,n}$ with $\gamma(F) = \varphi(g)$.

PROOF. The surface T_g supports a set of disjointly imbedded circles $\sigma_1, \ldots, \sigma_g$ which together do not disconnect T_g . Thus $\{\pi^{-1}(\sigma_1), \ldots, \pi^{-1}(\sigma_g)\}$ is an admissible system in $E_{g,n}$ of rank g. By (2.2), there is a foliation F with $\gamma(F) > \varphi(g)$. If $n \neq 1$ and $(n, g) \neq (0, 0)$, (3.1) says that $\alpha(E_{g,n}) = g$; hence Theorem A says that $\gamma(F) < \varphi(g)$. \square

We do not know whether $E_{g,1}$ admits a foliation F with $\gamma(F) = \varphi(2g)$, but we doubt it.

REFERENCES

- 1. L. Conlon and S. Goodman, Opening closed leaves in foliated 3-manifolds, Topology 14 (1975), 59-61.
 - 2. S. Goodman, Closed leaves in foliated 3-manifolds, Thesis, Saint Louis Univ., 1974.
- 3. S. P. Novikov, *Topology of foliations*, Trudy Moskov. Mat. Obšč. 14 (1965), 248–278; English transl., Trans. Moscow Math. Soc. 14 (1967), 268–304. MR 34 #824.
- 4. C. C. Pugh, A generalized Poincaré index formula, Topology 7 (1968), 217-226. MR 37 #4828.
- 5. P. A. Schweitzer, Codimension one plane fields and foliations, Differential Geometry (Proc. Sympos. Pure Math., vol. 27, part 1), Amer. Math. Soc., Providence, R. I., 1975, pp. 311-312.
 - 6. W. Thurston, Existence of codimension one foliations (preprint).
 - 7. J. W. Wood, Foliations on 3-manifolds, Ann. of Math. (2) 89 (1969), 336-358. MR 40 #2123.

DEPARTMENT OF MATHEMATICS, WASHINGTON UNIVERSITY, St. LOUIS, MISSOURI 63130

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NORTH CAROLINA, CHAPEL HILL, NORTH CAROLINA 27514 (Current address of Sue Goodman)

Current address (Lawrence Conlon): Department of Mathematics, Fordham University, New York, New York 10458